

Welcome to PyParadigm

PyParadigm is a small set of classes and functions designed to make it easy to
write psychological paradigms in Python.

“Why another presentation software?” You may ask. There is already a lot of
software, like E-Prime, Presentation, or Matlab. But since you are reading
the documentation of a Python library, I assume you already decided to use freely
available, non-commercial options. Of course there is still PsychoPy, but it
was never ported to Python3.

PyParadigm takes another approach. It does not force you to use a mouse to drag
and drop a paradigm together and struggle with some details that might not have
been forseen by the developers. Paradigms usually are just a sequence of screens
combined with some user-interaction, which will generate some data that
needs to be stored afterwards. Python allows you to manipulate the screen in any
thinkable way and process keyboard and mouse input arbitrarily through the great
PyGame library [https://www.pygame.org/news]. But while PyGame is great, it
requires a lot of code to write a paradigm, mostly because it is designed to
write programs that are much more complex than paradigms (i.e. video games).
And this is where PyParadigm comes in. It reduces the amount of required code to
a minimum.
To wet your appetite, I will present a short script that implements a simple
inter temporal choice task, where the subject chooses between 2 offers with the
left or the right arrow-key, and gets a short feedback. The decisions, including
delay and amount, will be stored in a json-file.

The screens looks like this:

[image: Offer Presentation]

Now the subject has to choose an option through a button press, in this case she/he
chooses the right option.

[image: Feedback]

And this is the script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

	import pygame
from pyparadigm.surface_composition import *
from pyparadigm.misc import empty_surface, display, init
from pyparadigm.eventlistener import EventListener

import json
import time

Scroll to the bottom, and start reading in the main() ;)

def offer_box(title, amount):
 # Creates a border around a vertical layout containing 2 cells, where the
 # lower one has twice the size of the upper one (layout children are
 # automatically wrapped in LLItems with relative_size=1). Both Boxes are
 # filled with text, wich is centered in its parent area.
 return Border()(
 LinLayout("v")(
 Text(title, Font(size=50)),
 LLItem(2)(Text(f"{amount}€", Font(size=50, bold=True)))
)
)

def make_offer(now, later, delay):
 # Create pygame.Surface with a white background.
 # The LinLayout splits the available space into (in this case)
 # equally sized horizontally aligned parts. 80% of the available
 # space of each part is used to display a offer box.
 return compose(empty_surface(0xFFFFFF), LinLayout("h"))(
 Padding.from_scale(0.8)(offer_box("Now", now)),
 Padding.from_scale(0.8)(offer_box(f"In {delay} days", later)),
)

def make_feedback(amount, delay):
 # creates a pygame.Surface which only contains the text message
 msg = f"{amount}€ " + ("now" if delay == 0 else f"in {delay} days")
 return compose(empty_surface(0xFFFFFF))(Text(msg, Font(size=50)))

def main():
 # initiate a window with a resolution of 800 x 600 pixels
 init((800, 600))
 # alternatively, to create a full screen, hardware accelrated window, you
 # could use:
 # init((1920, 1080), pygame.FULLSCREEN | pygame.HWSURFACE | pygame.DOUBLEBUF)

 # Create an Eventlistener object
 event_listener = EventListener()

 # Initiate the data for the paradigm, and create 2 lists to store
 # the results
 immediate_offers = ([10] * 3) + ([20] * 3) + ([30] * 3)
 delays = [10, 20, 30] * 3
 delayed_offers = [delay + im_offer
 for delay, im_offer in zip(delays, immediate_offers)]
 chosen_amounts = []
 chosen_delays = []
 reaction_times = []

 # Execute the paradigm
 for im_offer, del_offer, delay in zip(immediate_offers, delayed_offers, delays):
 # display the offer
 display(make_offer(im_offer, del_offer, delay))
 offer_onset = time.time()

 # wait for a decision in form of the left or right arrow-key
 key = event_listener.wait_for_keys([pygame.K_LEFT, pygame.K_RIGHT])
 # calculate reaction time and save it
 reaction_times.append(time.time() - offer_onset)

 # store results according to decision
 if key == pygame.K_LEFT:
 chosen_amounts.append(im_offer)
 chosen_delays.append(0)
 else:
 chosen_amounts.append(del_offer)
 chosen_delays.append(delay)

 # display a feedback for 2 seconds
 display(make_feedback(chosen_amounts[-1], chosen_delays[-1]))
 event_listener.wait_for_seconds(2)

 # save results to a json File
 with open("results.json", "w") as file:
 json.dump({"amount": chosen_amounts, "delay": chosen_delays,
 "reaction_times": reaction_times}, file)

if __name__ == '__main__':
 main()

The next step now would be to read the tutorial

Contents:

	A tutorial
	Installation

	Overview

	Creating a Window

	Creating Surfaces

	Reacting to user input

	The Misc-Module

	Next Step

	Examples
	Inter-temporal Choice Task

	Flashing Checkerboard

	Stroop Task

	The Surface Composition Module

	The Event Listener Module

	The Misc-Module

	Extras

	The Dialogs-Module

A tutorial

Installation

As most python libraries, PyParadigm can be installed via pip:

pip install pyparadigm

And thats it.

Overview

	PyParadigm is split into 4 modules:

	
	
	The Surface Composition Module which allows to create

	pygame.Surfaces , which is the class representing images, in a
declarative way.

	The Event Listener Module which allows to react to user input

	The Misc-Module which just contains a few utility functions

	Extras which contains functions to render numpy arrays

Althout PyParadigm is organized into multiple modules, everything can be
imported from pyparadigm directly. The contents of Extras is only
imported if matplotlib and numpy are installed

Creating a Window

In the simplest option to create a window is nothing but a call to the
init() function of the Misc-Module, which only takes
one parameter: a 2-tuple with the prefered resolution. E.g. init((800,
600)). However, most of the time, this is not exactly what you want.
Usually you want to create a full-screen or borderless window (which looks like
fullscreen, if it has the size of the screen, but behaves a little different).
For these scenarios, you can use the pygame_flags argument.
One of the things that init() does is calling
pygame.display.set_mode() [https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode], which
is the pygame function that creates the window, and the flags argument is passed
through. Here, a short list of flags you will care about the most:

	pygame.FULLSCREEN which will create a full-screen window.

	
	pygame.NOFRAME which creates a window without window-frame. This looks

	like fullscreen if the created window has the same resolution as the desktop
and is placed at (0, 0).

By default, the CPU will be used to render the images. This should suffice for
most paradigms. If, however, your paradigm is computationally very intensive and
requires a GPU you could use pygame.HWSURFACE, usually in combination with
pygame.DOUBLEBUF and pygame.FULLSCREEN, you can combine multiple flags with the
| operator. E.g:

init((1920, 1080), pygame.FULLSCREEN | pygame.HWSURFACE | pygame.DOUBLEBUF)

A warning: Creating a hardware accelerated window in other systems than Windows
can be problematic.
Now we can worry about how to fill this screen.

Creating Surfaces

An important concept here is to avoid worrying about absolute positions. Using
compose(), an image-structure can be described as a tree of elements.
E.g.:

image = compose(target_surface)(
 LinLayout("h")(
 Circle(0xFF0000, width=1),
 Circle(0x00FF00, width=1)
)
)

Here, the available space (which is the size of target_surface) is divided
horizontally ("h") into 2 parts of equal size. Generally, the space is
equally divided between the children if not explicitly modified. Then, a red
circle will be drawn into the left area and a blue one in the right area. The
trees can get arbitrarily complex, and I recommend to take a look at the
examples

Here is a list of the different elements that can be used within
compose()

	
	Containers with multiple children:

	
	LinLayout arranges items in a horizontal or vertical line

	GridLayout() arranges items in a grid

	Overlay draws its children on top of each other

	
	Wrappers, which take a single child:

	
	Padding creates a padding around its child

	
	LLItem is only usable within a LinLayout and defines

	proportions of items within a LinLayout

	
	Surface wraps pygame.Surfaces.

	E.g. loaded stimuli from files or texts, which are also generated as
Surfaces. All pygame.Surfaces in a tree are wrapped in
Surface objects automatically. It can also be done manually
to change placement or scaling options.

	
	RectangleShaper is closely related to Padding. It

	will create horizontal or vertical padding to create a child-shape with a
desired aspect ratio.

	
	Fill fills the assigned area with a given color before

	rendering its child. Can also be used without child.

	
	Border creates a border around its area. Can also be used

	without child.

	
	Primitives that don’t take any children:

	
	Circle draws a circle in the assigned area

	Cross() draws a cross within the assigned area

	Line draws a line within the assigned area

	
	Text() creates a pygame.Surface containing the passed text. The

	text can be multi-line, left-/ or right-aligned or centered. It takes a
pygame.Font as additional argument.

Children are generally passed via the __call__() operator of the
object. E.g. LinLayout("h")(child1, child2, child3) Whenever something only
takes a single child, the child can be a container. This way, it is possible to
add multiple children whenever only one child is allowed. compose()
itself allows only one child, which gets the whole image as target area. But
since a lot of compose() calls would have a container as its child,
compose() allows a second argument, which can be any component that
takes at least one child (except for Surface). The above example could also be
written like this:

image = compose(target_surface, LinLayout("h"))(
 Circle(0xFF0000),
 Circle(0x00FF00)
)

The first argument to compose() can either be a pygame.Surface to
render on (like above) or a 2-tuple with width and height. In the second case, a
new pygame.Surface with the specified dimensions would be created. To get a desired
background color for the newly created surface the root component should be a
Fill object.

The most common case though would be

image = compose(empty_surface(color), LinLayout("h"))(
 Circle(0xFF0000),
 Circle(0x00FF00)
)

empty_surface() is part of the Misc-Module and will
create a new pygame.Surface which is automatically filled with the given color.
A size for the new surface can be specified as second argument. If the size
argument is omitted, the created pygame.Surface will automatically have the size of the
display.

To display saved images, use pygame.image.load() and just use the
loaded pygame.Surface in compose.

Creating Text

Text() is not an object with a _draw()-method but a function that returns
a pygame.Surface, which contains the text on a transparent background.
Since a pygame.Surface is automatically wrapped into a
surface_composition.Surface object, it can be used like any other object.
This means that it will be centered in the available space and scaled down if the
available space is smaller than the text, but not scaled up otherwise.
You can wrap it explicitly in a surface_composition.Surface to
change scaling and positioning behavior.

Text() takes a pygame.Font as second argument, which can also be used to set the
size, and modifiers i.e. bold and italic.
Also Text supports multi-line texts which will be aligned according to the
align-parameter.
To load a font, the Font() function can be used. If called without
parameters, it will use the default system font with size=20 and without any modifiers, e.g.:

Text("Hello\nWordl!", Font())

Usually most text within a paradigm uses the same font settings. Therefore, it’s
recommended to define a function with according parameters. e.g.:

instruction_text = lambda s: Text(s, Font("arial", bold=True, size=30))

A tip for performance

Commonly, a paradigm is composed of a hand full of screens, which are the
same except for the specific content. E.g in the
IteCh example, there is a function make_offer() that will
create the offer screen and takes the details of the offer as arguments.
If such a function is called multiple times with the same
arguments, it is recommended to use
functools.lru_cache [https://docs.python.org/3/library/functools.html#functools.lru_cache]
as annotator. In this way, the screen will only be computed once for every unique
parameter combination, and, after the first call, the result will be returned from
cache, which lowers computation time.

The reason this was not done in the IteCh example was
that make_offer() was never called twice for a unique parameter combination.

Using numpy arrays as images

It is possible to use numpy arrays as input for images. The extras module
contains the mat_to_surface() function, which will return a
pygame.Surface which can then be used within compose. It expects a 2D array of
rgb values, and applies a transformer function to create a gray-value image.
Alternatively apply_color_map() can be used to get a colored surface
according to a matplotlib color map.

To generate a pygame.Surface from a 3D array where the third axis contains rgb
values you can use pygame.pixelcopy.make_surface(). Be aware that it
will silently transpose your array.

Reacting to user input

For input The Event Listener Module is
used, which handles the corresponding pygame events. When the user presses a
key, a pygame.Event is generated and added to the event queue. The
EventListener’s listen() method will query all pending
events from the event-queue and process them according to handler-functions. It
has already three methods that should suffice for most needs:

	
	wait_for_n_keypresses() will return if a specified key was

	pressed n times.

	
	wait_for_keys() will return if one of the given keys

	was pressed and return the pressed key. It also supports a timeout; when the
timeout is reached without a user pressing one of the keys, None is
returned.

	
	wait_for_seconds() will return after n seconds. Use this method

	instead of time.sleep(), so events will be processed in the meantime.

I recommend taking a look at the implementation of these 3 methods to see how
to use the listen()-method to implement your own handlers. The source
can be viewed from the module documentation page. There,
you can also find in-depth explanations on how to use the EventListener class.

Getting text input

For text input wait_for_unicode_char() will return a string with the
last pressed key expressed as a single character, so pressing the a key, will
return an “a”, pressing shift + a will return “A” and pressing return will
return “r”. Therefore it is necessary to have a buffer. You can use
process_char() (from the misc module)
to update the buffer using the returned character.

Example:

from pyparadigm import init, EventListener, compose, display, Text,\
 Font, process_char, empty_surface, Margin, Surface

init((400, 100))
buffer = ""
el = EventListener()
while True:
 display(compose(empty_surface(0xFFFFFF))(
 # using a left top margin of 0 will put the resulting pygame.Surface
 # to the left top corner
 Surface(Margin(left=0, top=0))(
 Text(buffer, Font("monospace"), align="left")
)))

 new_char = el.wait_for_unicode_char()
 if new_char == "\x1b": # Str representation of ESC
 break
 else:
 buffer = process_char(buffer, new_char)

Getting mouse input

In this scenario it is easier to use an example. The following code will display
4 squares of random color:

import random

from pyparadigm import init, EventListener, compose, display,\
 empty_surface, GridLayout, Fill, EventConsumerInfo

import pygame

init((400, 400))
all_colors = [0xFFFFFF, 0x000000, 0xFF0000, 0x00FF00, 0x0000FF]
active_colors = [random.choice(all_colors) for i in range(4)]
el = EventListener()

def field(i):
 return Fill(active_colors[i])

while True:
 display(compose(empty_surface(0xFFFFFF), GridLayout())(
 [field(0), field(1)],
 [field(2), field(3)]
))

 result = el.wait_for_keys(pygame.K_ESCAPE)
 if result == pygame.K_ESCAPE:
 break

We will now introduce mouse support, to change the color of a square, if we
click on it. For that we install a MouseProxy() into the render tree.
A MouseProxy has a _draw() method that will be called by compose, but
it does not render anything, it only saves the assigned area, and then renders
its children.
A MouseProxy takes a handler function that takes 3 arguments, the event itself,
as well as an x and a y value, which are relative to the mouse area.

	The event object iteself contains a few information:

	
	
	type:

	One of: pygame.MOUSEBUTTONUP, pygame.MOUSEBUTTONDOWN, or pygame.MOUSEMOTION.

	
	pos:

	a 2-tuple with the window coordinates, x and y, of the click.

	
	pos_rel:

	only for MOUSEMOTION, contains the differences for x and y since the last
MOUSEMOTION event.

	
	buttons:

	only for MOUSEMOTION, contains a 3-tuple each value is 0 or 1, representing
whether the correspoding button is pressed (1) or not (0). The order is
(LEFT, MIDDLE, RIGHT)

	
	button:

	only for MOUSEBUTTONUP and MOUSEBUTTONDOWN: contains the keycode of the
pressed button. Since pygame did not define constants for them, they are
defined in the eventlistener module. The possible values are:

	MOUSE_LEFT

	MOUSE_MIDDLE

	MOUSE_RIGHT

	MOUSE_SCROL_FW (forwards)

	MOUSE_SCROL_BW (backwards)

The MouseProxy class has a method listener, which could be used in
conjunction with EventListener.listen().

There is a shortcut though: EventListener.mouse_area() it creates
MouseProxy, stores it internally, and returns it. Every stored proxy is assigned
a group (0 by default), and only the mouse proxies from within the active group
are used as permanent handler. To prevent recreation of existing proxies during
repeated calls every proxy is assigned an id, by default the memory address of
their handlers are used.
There is a function EventListener.group() which sets the current group,
so you could use something like el.group(2).wait_for_keys(…) to specify
which group of mouse proxies should be used explicitly. To disable proxies
simply use the id of a non existing group.

A version of the upper example which changes the color of a square randomly, if
you click on it is:

import random

from pyparadigm import init, EventListener, compose, display,\
 empty_surface, GridLayout, Fill, EventConsumerInfo, MOUSE_LEFT

import pygame

init((400, 400))
all_colors = [0xFFFFFF, 0x000000, 0xFF0000, 0x00FF00, 0x0000FF]
active_colors = [random.choice(all_colors) for i in range(4)]
el = EventListener()

def make_id_returner(i):
 return lambda e, x, y: i if (e.type == pygame.MOUSEBUTTONDOWN
 and e.button == MOUSE_LEFT)\
 else EventConsumerInfo.DONT_CARE

def field(i):
 return el.mouse_area(make_id_returner(i))(Fill(active_colors[i]))

while True:
 display(compose(empty_surface(0xFFFFFF), GridLayout())(
 [field(0), field(1)],
 [field(2), field(3)]
))

 result = el.wait_for_keys(pygame.K_ESCAPE)
 if result == pygame.K_ESCAPE:
 break
 else:
 active_colors[result] = random.choice(all_colors)

The Misc-Module

The Misc-Module contains everything that was handy enough to be part of
PyParadigm, but was not big enough for its own module.
It contains the following functions:

	
	init() needs to be called before any other call to a member of

	PyParadgim and creates the pygame window in which the contents will be displayed.

	
	display() can be used to conveniently display a pygame surface,

	which has the size of the pygame window.

	
	slide_show() takes a list of pygame.Surfaces, which are supposed

	to have the same size as the display window, and a handler function. When
the handler function returns, the next slide is shown. Handy to display
multi-page text.

	
	empty_surface() creates a new pygame.Surface of the given size

	(or of the size of the pygame window, if no size was specified) and
automatically fills it with a given background color.

	
	process_char() returns a new version of a given buffer, modified

	based on a string containing a unicode character.

Next Step

The next step now would be to take a look the the examples to
see how to apply what you just learned.

Examples

You can find all examples on this page in the doc/examples folder.

Inter-temporal Choice Task

This is the exact same example as on the front page.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

	import pygame
from pyparadigm.surface_composition import *
from pyparadigm.misc import empty_surface, display, init
from pyparadigm.eventlistener import EventListener

import json
import time

Scroll to the bottom, and start reading in the main() ;)

def offer_box(title, amount):
 # Creates a border around a vertical layout containing 2 cells, where the
 # lower one has twice the size of the upper one (layout children are
 # automatically wrapped in LLItems with relative_size=1). Both Boxes are
 # filled with text, wich is centered in its parent area.
 return Border()(
 LinLayout("v")(
 Text(title, Font(size=50)),
 LLItem(2)(Text(f"{amount}€", Font(size=50, bold=True)))
)
)

def make_offer(now, later, delay):
 # Create pygame.Surface with a white background.
 # The LinLayout splits the available space into (in this case)
 # equally sized horizontally aligned parts. 80% of the available
 # space of each part is used to display a offer box.
 return compose(empty_surface(0xFFFFFF), LinLayout("h"))(
 Padding.from_scale(0.8)(offer_box("Now", now)),
 Padding.from_scale(0.8)(offer_box(f"In {delay} days", later)),
)

def make_feedback(amount, delay):
 # creates a pygame.Surface which only contains the text message
 msg = f"{amount}€ " + ("now" if delay == 0 else f"in {delay} days")
 return compose(empty_surface(0xFFFFFF))(Text(msg, Font(size=50)))

def main():
 # initiate a window with a resolution of 800 x 600 pixels
 init((800, 600))
 # alternatively, to create a full screen, hardware accelrated window, you
 # could use:
 # init((1920, 1080), pygame.FULLSCREEN | pygame.HWSURFACE | pygame.DOUBLEBUF)

 # Create an Eventlistener object
 event_listener = EventListener()

 # Initiate the data for the paradigm, and create 2 lists to store
 # the results
 immediate_offers = ([10] * 3) + ([20] * 3) + ([30] * 3)
 delays = [10, 20, 30] * 3
 delayed_offers = [delay + im_offer
 for delay, im_offer in zip(delays, immediate_offers)]
 chosen_amounts = []
 chosen_delays = []
 reaction_times = []

 # Execute the paradigm
 for im_offer, del_offer, delay in zip(immediate_offers, delayed_offers, delays):
 # display the offer
 display(make_offer(im_offer, del_offer, delay))
 offer_onset = time.time()

 # wait for a decision in form of the left or right arrow-key
 key = event_listener.wait_for_keys([pygame.K_LEFT, pygame.K_RIGHT])
 # calculate reaction time and save it
 reaction_times.append(time.time() - offer_onset)

 # store results according to decision
 if key == pygame.K_LEFT:
 chosen_amounts.append(im_offer)
 chosen_delays.append(0)
 else:
 chosen_amounts.append(del_offer)
 chosen_delays.append(delay)

 # display a feedback for 2 seconds
 display(make_feedback(chosen_amounts[-1], chosen_delays[-1]))
 event_listener.wait_for_seconds(2)

 # save results to a json File
 with open("results.json", "w") as file:
 json.dump({"amount": chosen_amounts, "delay": chosen_delays,
 "reaction_times": reaction_times}, file)

if __name__ == '__main__':
 main()

Flashing Checkerboard

This example just alternates the two stimuli with frequency of 2Hz.
To make sure, that the interpreter finds the stimuli cd into the examples
folder, and execute it from there.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

	import pygame
from pyparadigm.misc import init, display, empty_surface
from pyparadigm.surface_composition import compose, Surface, Text, Font
from pyparadigm.eventlistener import EventListener
from functools import lru_cache
from itertools import cycle

def render_frame(screen, frame):
 # This time we dont use :py:func:`misc.display` and instead draw directly
 # onto the screen, and call flip() then to display it. Usually we would want
 # to generate a screen with a function (with lru_cache), and then use
 # :py:func:`misc.display` to blit the different screens. This way every
 # screen is only computed once. This time though, no screens are computed,
 # it is simply displaying an existing image, and no screens are reused.
 compose(screen)(Surface(scale=1)(frame))
 pygame.display.flip()

def main():
 # we want to display the two states with 2Hz, therefore the timeout is 1/2s
 timeout = 0.5
 # initialize a window, and get a reference to the pygame.Surface
 # representing the screen.
 screen = init((1024, 800))
 # Load the frames. When loading a pygame.Surface from a file, you should
 # always call convert() on it, this will change the image format to optimize
 # performance. If you have an image that uses transparent pixels, use
 # convert_alpha() instead.
 # We use itertools.cycle to get an iterator that will alternate between the
 # images, see the python-doc (https://docs.python.org/3/library/itertools.html)
 frames = cycle([pygame.image.load(f"checkerboard_{i}.png").convert()
 for i in range(2)])
 # Create an EventListener object. No additional handlers needed here.
 event_listener = EventListener()
 # Display an initial text
 display(compose(empty_surface(0xFFFFFF))(Text(
 """Press Return to start.

 Press again to end.""", Font(size=60))))
 # Wait for the return key
 event_listener.wait_for_n_keypresses(pygame.K_RETURN)
 key = None
 # Repeat until return is pressed again
 while key == None:
 # display one of the two checkerboard images
 render_frame(screen, next(frames))
 # wait for timeout seconds for RETURN to be pressed. If RETURN is
 # pressed :py:meth:`EventListener.wait_for_keys` will return
 # pygame.K_RETURN otherwise it will return NONE
 key = event_listener.wait_for_keys([pygame.K_RETURN], timeout)

if __name__ == '__main__':
 main()

Stroop Task

This example is more serious, and implements a stroop task with a two-stage
training procedure.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

	""" This script contains an example implementation of the stroop task.

The easiest way to understand this code is to start reading in the main
function, and then read every function when it's called first
"""

import random
import time
import csv
from collections import namedtuple
from enum import Enum
from functools import lru_cache
from itertools import islice, repeat

import pygame

from pyparadigm import (EventListener, Fill, Font, LinLayout, LLItem, Padding,
 RectangleShaper, Surface, Text, compose, display,
 empty_surface, init, slide_show)

==
Just Configuration
==
n_train_1_trials = 30
n_train_2_trials = 10
trials_per_block = 10
intro_text = ["""
Welcome to the Stroop-demo.
In this task you will be presented with words naming colors
which are written in a colored font.
You will either have to indicate the name of the color, or the
color of the font, using the arrow keys.

Press Return to continue.
""",
"""
To indicate the color you will have to use the number keys,

1 for red
2 for green
3 for blue

press Return to continue
""",
"""
First you will learn the mappings by heart.
To do so you will be displayed with the mappings, after %d trials
the mappings won't be shown any more. Then after %d
correct trials, the main task will start.
""" % (n_train_1_trials, n_train_2_trials)]

pre_hidden_training_text = """
Now we will hide the mapping, and the task will continue until you answered
correctly %d times.

Press Return to continue""" % n_train_2_trials

post_hidden_training_text = """
The training was succesful.

Press Return to continue"""

pre_text_block_text = """
Now, we begin with the test. Please indicate the color
that is named by the letters

Press Return to continue
"""

post_test_block_text = """
Now, please indicate the color in which
the word is written

Press Return to continue
"""

end_text = """
The task is complete, thank you for your participation
Press Return to escape
"""

==
some utility functions
==

@lru_cache()
def text(s: str, color=0):
 # This is our configuration of how to display text, with the arial font, and
 # a pointsize of 30.
 # Due to the way text is plotted it needs the information of an alphachannel
 # therefore it is not possible to simply pass the hex-code of the color, but it
 # is necessary to create a pygame.Color object. For which, again, it is necessary
 # to multiply the hex code with 0x100 to respect the alphachannel
 return Text(s, Font("Arial", size=30), color=pygame.Color(color * 0x100))

def _bg():
 # short for background
 return empty_surface(0xFFFFFF)

def display_text(s:str):
 display(compose(_bg())(text(s)))

def display_text_and_wait(s: str, el: EventListener, key: int = pygame.K_RETURN):
 display_text(s)
 el.wait_for_keys(key)

==
Main Program
==
class Color(Enum):
 red = 0xFF0000
 green = 0x00FF00
 blue = 0x0000FF

colors = list(Color)

key_color_mapping = {
 eval("pygame.K_%d" % (i + 1)): color
 for i, color in enumerate(Color)
}

def display_intro(el: EventListener):
 # the first argument for slide_show must be an iterable of pygame.Surface
 # to create it we render the text onto an empty surface with the map()
 # function. slide_show displays one slide, and then calls the function that
 # is passed to it as second argument. When this function returns, the next
 # slide is displayed and the function is called again. The function that is
 # passed simply waits for the return key
 slides = map(lambda s: compose(_bg())(text(s)), intro_text)
 slide_show(slides, lambda: el.wait_for_keys(pygame.K_RETURN))

@lru_cache()
def make_train_stim(type: str, color: Color):
 # encapsulates the creation of a training stim. Either a square of the given
 # or the name of the color as text, they are wrapped by a RectangleShaper,
 # by default, will create a square
 assert type in ["color", "text"]
 return RectangleShaper()(
 text(color.name) if type == "text" else Fill(color.value))

def make_color_mapping():
 # The mapping is a horizontal layout consisting of groups of
 # a text element describing the key, and a square containing the color
 # we use make_train_stim() to create the square, and add a LLItem(1) in
 # the back and the front to get visible gaps between the groups.
 # The * in from of the list is used to expand the list to the arguments
 # for the LinLayouts inner function.
 return LinLayout("h")(*[LinLayout("h")(LLItem(1), text(str(key + 1)),
 make_train_stim("color", color), LLItem(1))
 for key, color in enumerate(Color)])

@lru_cache()
def render_train_screen(show_mapping, stim_type, target_color):
 # the contents are aranged in a vertical layout, topmost is the
 # title "target color", followed by the stim for training (either a
 # square containing the color, or the word naming the color)
 # in the Bottom there is the information which key is mapped to which
 # color. But its only displayed optionally

 return compose(_bg(), LinLayout("v"))(
 # Create the Text
 text("target color:"),

 # Create the stimulus, and scale it down a little.
 Padding.from_scale(0.3)(make_train_stim(stim_type, target_color)),

 # Up till here the content is static, but displaying the mapping is optionally
 # and depends on the parameter, therefore we either add the mapping, or
 # an LLItem(1) as placeholder
 make_color_mapping() if show_mapping else LLItem(1)
)

def do_train_trial(event_listener: EventListener, show_mapping: bool, stim_type:
 str, target_color: Color):
 # displays a training_screen
 display(render_train_screen(show_mapping, stim_type, target_color))

 # waits for a response
 response_key = event_listener.wait_for_keys(key_color_mapping)

 # returns whether the response was correct
 return key_color_mapping[response_key] == target_color

def rand_elem(seq, n=None):
 """returns a random element from seq n times. If n is None, it continues indefinitly"""
 return map(random.choice, repeat(seq, n) if n is not None else repeat(seq))

def until_n_correct(n, func):
 n_correct = 0
 while n_correct < n:
 if func():
 n_correct += 1
 else:
 n_correct = 0

def do_training(el: EventListener):
 arguments = zip(rand_elem(["text", "color"]), rand_elem(colors))
 for stim_type, color in islice(arguments, n_train_1_trials):
 do_train_trial(el, True, stim_type, color)

 display_text_and_wait(pre_hidden_training_text, el)
 until_n_correct(n_train_2_trials, lambda: do_train_trial(el, False, *next(arguments)))
 display_text_and_wait(post_hidden_training_text, el)

@lru_cache()
def render_trial_screen(word, font_color, target):
 return compose(_bg(), LinLayout("v"))(
 # Create the Text
 text("Which color is named by the letters?" if target == "text"
 else "What's the color of the word?"),

 # Create the stimulus, and scale it down a little.
 Padding.from_scale(0.3)(text(word, font_color)),
 LLItem(1)
)

BlockResult = namedtuple("BlockResult", "RT word font_color response was_correct")

def run_block(event_listener: EventListener, by: str, n_trials: int)-> BlockResult:
 assert by in ["text", "color"]
 RTs = []; words = []; fonts = []; responses = []; was_correct = []
 for word, font in zip(rand_elem(colors, n_trials), rand_elem(colors)):
 words.append(word)
 fonts.append(font)
 display(render_trial_screen(word.name, font.value, by))

 # We use this to record reaction times
 start = time.time()
 response_key = event_listener.wait_for_keys(key_color_mapping)

 # Now the reaction time is just now - then
 RTs.append(time.time() - start)
 response = key_color_mapping[response_key]
 responses.append(response)
 was_correct.append(response == (word if by == "text" else font))

 return BlockResult(RTs, words, fonts, responses, was_correct)

def save_results(text_res: BlockResult, font_res: BlockResult):
 with open("results.tsv", "w") as f:
 writer = csv.writer(f, delimiter="\t")
 writer.writerow(("by",) + BlockResult._fields)
 for line in zip(*text_res):
 writer.writerow(("text",) + line)
 for line in zip(*font_res):
 writer.writerow(("font",) + line)

def main():
 # create the pygame window. It has a resolution of 1024 x 800 pixels
 init((1024, 800))

 # create an event listener that will be used through the whole program
 event_listener = EventListener()
 display_intro(event_listener)
 do_training(event_listener)

 display_text_and_wait(pre_text_block_text, event_listener)
 text_block_results = run_block(event_listener, by="text",
 n_trials=trials_per_block)
 display_text_and_wait(post_test_block_text, event_listener)
 color_block_results = run_block(event_listener, by="color",
 n_trials=trials_per_block)
 display_text_and_wait(end_text, event_listener)

 save_results(text_block_results, color_block_results)

if __name__ == "__main__":
 main()

The Surface Composition Module

Easy Image Composition

The purpose of this module is to make it easy to compose the
frames that are displayed in a paradigm. For an introduction, please refer to
the tutorial

	
class pyparadigm.surface_composition.Border(width=3, color=0)[source]

	Draws a border around the contained area. Can have a single child.

	Parameters

	
	width (int) – width of the border in pixels

	color (pygame.Color) – color of the border

	
class pyparadigm.surface_composition.Circle(color, width=0)[source]

	Draws a Circle in the assigned space.

The circle will always be centered, and the radius will be half of the
shorter side of the assigned space.

	Parameters

	
	color (pygame.Color or int) – The color of the circle

	width (int) – width of the circle (in pixels). If 0 the circle will be filled

	
pyparadigm.surface_composition.Cross(width=3, color=0)[source]

	Draws a cross centered in the target area

	Parameters

	
	width (int) – width of the lines of the cross in pixels

	color (pygame.Color) – color of the lines of the cross

	
class pyparadigm.surface_composition.FRect(x, y, w, h)[source]

	A wrapper Item for children of the FreeFloatLayout, see description of FreeFloatLayout

	
class pyparadigm.surface_composition.Fill(color)[source]

	Fills the assigned area. Afterwards, the children are rendered

	Parameters

	color (pygame.Color or int) – the color with which the area is filled

	
pyparadigm.surface_composition.Font[source]

	Unifies loading of fonts.

	Parameters

	
	name (str) – name of system-font or filepath, if None is passed the default
system-font is loaded

	source (str) – “sys” for system font, or “file” to load a file

	
class pyparadigm.surface_composition.FreeFloatLayout[source]

	A “Layout” that allows for free positioning of its elements. All children
must be Wrapped in an FRect, which takes a rects arguments (x, y, w, h), and
determines the childs rect. All values can either be floats, and must then
be between 0 and 1 and are relative to the rect-size of the layout, positive
integers, in which case the values are interpreded as pixel offsets from the
layout rect origin, or negative integers, in which case the absolute value
is the available width or height minus the value

	
pyparadigm.surface_composition.GridLayout(row_proportions=None, col_proportions=None, line_width=0, color=0)[source]

	Layout that arranges its children on a grid.

Proportions are given as lists of integers, where the nth element
represents the proportion of the nth row or column.

Children are added in lists, every list represents one row,
if row or column proportions are provided, the number of rows or columns in
the children must match the provided proportions.
To define an empty cell use None as child.

If no column proportions are provided, rows can have different lengths. In
this case the width of the layout will be the length of the longest row,
and the other rows will be filled with Nones

	
class pyparadigm.surface_composition.LLItem(relative_size)[source]

	Defines the relative size of an element in a LinLayout

All Elements that are passed to a linear layout are automatically wrapped
into an LLItem with relative_size=1. Therefore by default all elements
within a layout will be of the same size. To change the proportions a LLItem
can be used explicitely with another relative size.

It is also possible to use an LLItem as placeholde in a layout, to generate
an empty space like this:

	Example

	

	LinLayout(“h”)(

	LLItem(1),
LLItem(1)(Circle(0xFFFF00)))

	
class pyparadigm.surface_composition.LinLayout(orientation)[source]

	A linear layout to order items horizontally or vertically.

Every element in the layout is automatically wrapped within a LLItem with
relative_size=1, i.e. all elements get assigned an equal amount of space, to
change that elements can be wrappend in LLItems manually to get desired
proportions

	Parameters

	orientation (str) – orientation of the layout, either ‘v’ for vertica, or
‘h’ for horizontal.

	
class pyparadigm.surface_composition.Line(orientation, width=3, color=0)[source]

	Draws a line.

	Parameters

	
	width – width of the line in pixels

	orientation (str) – “v” or “h”. Indicates whether the line should be
horizontal or vertical.

	
class pyparadigm.surface_composition.Margin(left=1, right=1, top=1, bottom=1)[source]

	Defines the relative position of an item within a Surface.
For details see Surface.

	
class pyparadigm.surface_composition.Overlay(*children)[source]

	Draws all its children on top of each other in the same rect

	
class pyparadigm.surface_composition.Padding(left, right, top, bottom)[source]

	Pads a child element

Each argument refers to a percentage of the axis it belongs to.
A padding of (0.25, 0.25, 0.25, 0.25) would generate blocked area a quater of the
available height in size above and below the child, and a quarter of the
available width left and right of the child.

If left and right or top and bottom sum up to one that would mean no space
for the child is remaining

	
static from_scale(scale_w, scale_h=None)[source]

	Creates a padding by the remaining space after scaling the content.

E.g. Padding.from_scale(0.5) would produce Padding(0.25, 0.25, 0.25, 0.25) and
Padding.from_scale(0.5, 1) would produce Padding(0.25, 0.25, 0, 0)
because the content would not be scaled (since scale_h=1) and therefore
there would be no vertical padding.

If scale_h is not specified scale_h=scale_w is used as default

	Parameters

	
	scale_w (float) – horizontal scaling factors

	scale_h (float) – vertical scaling factor

	
class pyparadigm.surface_composition.RectangleShaper(width=1, height=1)[source]

	Creates a padding, defined by a target Shape.

Width and height are the relative proportions of the target rectangle.
E.g RectangleShaper(1, 1) would create a square. and RectangleShaper(2, 1)
would create a rectangle which is twice as wide as it is high.
The rectangle always has the maximal possible size within the parent area.

	
class pyparadigm.surface_composition.Surface(margin=<pyparadigm.surface_composition.Margin object>, scale=0, smooth=True, keep_aspect_ratio=True)[source]

	Wraps a pygame surface.

The Surface is the connection between the absolute world of pygame.Surfaces and the
relative world of the composition functions. A pygame.Surfaces can be bigger than
the space that is available to the Surface, or smaller. The Surface does the actual
blitting, and determines the concrete position, and if necessary (or
desired) scales the input surface.

Warning: When images are scaled with smoothing, colors will change decently, which
makes it inappropriate to use in combination with colorkeys.

	Parameters

	
	margin (Margin object) – used to determine the exact location of the pygame.Surfaces within
the available space. The margin value represents the proportion of
the free space, along
an axis, i.e. Margin(1, 1, 1, 1) is centered, Margin(0, 1, 1, 2) is as far
left as possible and one/third on the way down.

	scale (float) – If 0 < scale <= 1 the longer side of the surface is scaled to
to the given fraction of the available space, the aspect ratio is
will be preserved.
If scale is 0 the will be no scaling if the image is smaller than the
available space. It will still be scaled down if it is too big.

	smooth (float) – if True the result of the scaling will be smoothed

	
pyparadigm.surface_composition.Text(text, font, color=(0, 0, 0, 255), antialias=False, align='center')[source]

	Renders a text. Supports multiline text, the background will be transparent.

	Parameters

	align (str) – text-alignment must be “center”, “left”, or “righ”

	Returns

	the input text

	Return type

	pygame.Surface

	
pyparadigm.surface_composition.compose(target, root=None)[source]

	Top level function to create a surface.

	Parameters

	target – the pygame.Surface to blit on. Or a (width, height) tuple
in which case a new surface will be created

The Event Listener Module

The Eventlistener wraps pygames event-loop.

The Core method is the listen() method.
It gathers the events that have piled up in pygame so far
and processes them acording to handler functions.
This allows for a main-loop free script design, which is more suited for
experimental paradigms.
In a typical experiment the script just waits for a userinput and does nothing,
or only a very few things in between. Approaching this need with a main
event-loop requires the implementation of some sort of statemachine, which again
requires quite some code.

The EventListener enables one to write scripts in a time-linear manner, and only
dab into local event-loops whenever neccessary throught the listen-function.

There are a few pre-implemented methods, which cover most of those use-cases in
the developement of experimental paradigms.

	wait_for_keypress() will return once a key was pressed n times.

	
	wait_for_keys_timed_out() will wait for one of multiple possible keys,

	but return after the given timeout in an
y case

	and wait_for_seconds will simply wait the given time, but in the mean-time run
what ever handlers were passed to the EventListener.

By default, there is one permanent handler, which will call exit(1) when
Ctrl + c is pressed.

	
class pyparadigm.eventlistener.EventConsumerInfo[source]

	Can be returned by event-handler functions to communicate with the listener.
For Details see EventListener

	
class pyparadigm.eventlistener.EventListener(permanent_handlers=None, use_ctrl_c_handler=True)[source]

	
	Parameters

	
	permanent_handlers (iterable) – iterable of permanent handlers

	use_ctrl_c_handler (Bool) – specifies whether a handler that quits the
script when ctrl + c is pressed should be used

	
group(group)[source]

	sets current mouse proxy group and returns self.
Enables lines like el.group(1).wait_for_keys(…)

	
listen(*temporary_handlers)[source]

	When listen() is called all queued pygame.Events will be passed to all
registered listeners. There are two ways to register a listener:

	
	as a permanent listener, that is always executed for every event. These

	are registered by passing the handler-functions during construction

	
	as a temporary listener, that will only be executed during the current

	call to listen(). These are registered by passing the handler functions
as arguments to listen()

When a handler is called it can provoke three different reactions through
its return value.

	
	It can return EventConsumerInfo.DONT_CARE in which case the EventListener

	will pass the event to the next handler in line, or go to the next event,
if the last handler was called.

	
	It can return EventConsumerInfo.CONSUMED in which case the event will not

	be passed to following handlers, and the next event in line will be
processed.

	
	It can return anything else (including None, which will be returned if no

	return value is specified) in this case the listen()-method will return
the result of the handler.

Therefore all permanent handlers should usually return
EventConsumerInfo.DONT_CARE

	
listen_until_return(*temporary_handlers, timeout=0, sleeptime=0)[source]

	Calls listen repeatedly until listen returns something else than None.
Then returns listen’s result. If timeout is not zero listen_until_return
stops after timeout seconds and returns None.

	
mouse_area(handler, group=0, ident=None)[source]

	Adds a new MouseProxy for the given group to the
EventListener.mouse_proxies dict if it is not in there yet, and returns
the (new) MouseProxy. In listen() all entries in the current group of
mouse_proxies are used.

	
wait_for_keys(*keys, timeout=0, sleeptime=0)[source]

	Waits until one of the specified keys was pressed, and returns
which key was pressed.

	Parameters

	
	keys (iterable) – iterable of integers of pygame-keycodes, or simply
multiple keys passed via multiple arguments

	timeout (float) – number of seconds to wait till the function returns

	Returns

	The keycode of the pressed key, or None in case of timeout

	Return type

	int

	
wait_for_keys_modified(*keys, modifiers_to_check={1, 2, 3, 64, 128, 192, 256, 512, 768, 1024, 2048, 3072, 4096, 8192, 16384}, timeout=0, sleeptime=0.001)[source]

	The same as wait_for_keys, but returns a frozen_set which contains
the pressed key, and the modifier keys.

	Parameters

	modifiers_to_check – iterable of modifiers for which the function
will check whether they are pressed

	
wait_for_n_keypresses(key, n=1)[source]

	Waits till one key was pressed n times.

	Parameters

	
	key (int) – the key to be pressed as defined by pygame. E.g.
pygame.K_LEFT for the left arrow key

	n (int) – number of repetitions till the function returns

	
wait_for_seconds(seconds, sleeptime=0.001)[source]

	basically time.sleep() but in the mean-time the permanent handlers
are executed

	
wait_for_unicode_char(ignored_chars=None, timeout=0, sleeptime=0.001)[source]

	Returns a str that contains the single character that was pressed.
This already respects modifier keys and keyboard layouts. If timeout is
not none and no key is pressed within the specified timeout, None is
returned. If a key is ingnored_chars it will be ignored. As argument for
irgnored_chars any object that has a __contains__ method can be used,
e.g. a string, a set, a list, etc

	
class pyparadigm.eventlistener.MouseProxy(handler: Callable[[int, int], int], ident=None)[source]

	has a _draw method so that it can be used with
surface_composition.compose(). When “rendered” it simply saves the own
coordinates and then renders its child.
The listener method can then be used with EventListener.listen() to execute
the provided handler when the mouse interacts with the area.
The handler gets the event type, pygame.MOUSEBUTTONUP, pygame.MOUSEBUTTONDOWN
and pygame.MOUSEMOTION and the relative coordinates within the area.
For unique identification along all MouseProxies the ident paramenter is used.
If ident is None (the default) it is set to id(handler)

	
pyparadigm.eventlistener.is_left_click(event)[source]

	checks whether the provided pygame event is a left mouse click

The Misc-Module

Contains code that did not make it into an own module.

	
pyparadigm.misc.display(surface)[source]

	Displays a pygame.Surface in the window.

in pygame the window is represented through a surface, on which you can draw
as on any other pygame.Surface. A refernce to to the screen can be optained
via the pygame.display.get_surface() function. To display the
contents of the screen surface in the window pygame.display.flip()
needs to be called.

display() draws the surface onto the screen surface at the postion
(0, 0), and then calls flip().

	Parameters

	surface (pygame.Surface) – the pygame.Surface to display

	
pyparadigm.misc.empty_surface(fill_color, size=None, flags=0)[source]

	Returns an empty surface filled with fill_color.

	Parameters

	
	fill_color (pygame.Color) – color to fill the surface with

	size (int-2-tuple) – the size of the new surface, if None its created
to be the same size as the screen

	
pyparadigm.misc.init(resolution, pygame_flags=0, display_pos=(0, 0), interactive_mode=False, title='Pygame Window')[source]

	Creates a window of given resolution.

	Parameters

	
	resolution (tuple) – the resolution of the windows as (width, height) in
pixels

	pygame_flags (int) – modify the creation of the window.
For further information see Creating a Window

	display_pos (tuple) – determines the position on the desktop where the
window is created. In a multi monitor system this can be used to position
the window on a different monitor. E.g. the monitor to the right of the
main-monitor would be at position (1920, 0) if the main monitor has the
width 1920.

	interactive_mode (bool) – Will install a thread, that emptys the
event-queue every 100ms. This is neccessary to be able to use the
display() function in an interactive console on windows systems.
If interactive_mode is set, init() will return a reference to the
background thread. This thread has a stop() method which can be used to
cancel it. If you use ctrl+d or exit() within ipython, while the thread
is still running, ipython will become unusable, but not close.

	title (str) – the Title of the Window

	Returns

	a reference to the display screen, or a reference to the background
thread if interactive_mode was set to true. In the second scenario you
can obtain a reference to the display surface via
pygame.display.get_surface()

	Return type

	pygame.Surface

	
pyparadigm.misc.make_transparent_by_colorkey(surf, colorkey, copy=True)[source]

	Makes image transparent, and sets all pixel of a certain color
transparent

This is useful if images should be scaled and smoothed, as this will change
the colors and make colorkeys useless, if surf has no alpha channel a new
image is returned, if it does have one the behavior depends on the copy
parameter

	
pyparadigm.misc.make_transparent_by_mask(surf, mask, copy=True)[source]

	Sets all voxels that are 1 in the mask to transparent.
if surf has no alpha channel a new image is returned, if it does have
one the behavior depends on the copy
parameter

	
pyparadigm.misc.process_char(buffer: str, char: str, mappings={'\t': ' ', '\r': '\n'})[source]

	This is a convinience method for use with
EventListener.wait_for_unicode_char(). In most cases it simply appends
char to buffer. Some replacements are done because presing return will
produce ‘r’ but for most cases ‘n’ would be desireable.
Also backspace cant just be added to a string either, therefore, if char is
“u0008” the last character from buffer will be cut off. The replacement
from ‘r’ to ‘n’ is done using the mappings argument, the default value
for it also contains a mapping from ‘ ‘ to 4 spaces.

	Parameters

	
	buffer (str) – the string to be updated

	char (str) – the unicode character to be processed

	mappings (dict) – a dict containing mappings

	Returns

	a new string

	
pyparadigm.misc.rgba(colorcode, alpha=255)[source]

	Returns a pygame rgba color object, with the provided
alpha value.

	
pyparadigm.misc.slide_show(slides, continue_handler)[source]

	Displays one “slide” after another.

After displaying a slide, continue_handler is called without arguments.
When continue_handler returns, the next slide is displayed.

Usage example

slide_show(text_screens,
 partial(event_listener.wait_for_n_keypresses, pygame.K_RETURN))

(partial is imported from the functools module.)

	Parameters

	
	slides (iterable) – pygame.Surfaces to be displayed.

	continue_handler (callable with arity 0.) – function, that returns when the next slide should
be displayed.

Extras

This module requires additional installation of numpy
and matplotlib.

The Dialogs-Module

This module contains dialogues, which will query user input

	
pyparadigm.dialogs.string_dialog(caption: str, renderer: callable = <function _center_renderer>, el: pyparadigm.eventlistener.EventListener = None, text_renderer=<functools._lru_cache_wrapper object>)[source]

	Will display a dialog which gets a string as input from the user.
By default the dialog will be rendered to the screen directly, to control
the target pass a callable as renderer which takes a single argument, which
is an element tree. This will be called by string_dialog to display itself.
You can pass an eventlistener instance, which will then be used in case you
got some important permanent handlers that must be run. You can pass a
function that converts a string to something that can be used within
compose() with the text_renderer to control the optic of the text

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyparadigm	

 	
 	
 pyparadigm.dialogs	

 	
 	
 pyparadigm.eventlistener	

 	
 	
 pyparadigm.misc	

 	
 	
 pyparadigm.surface_composition	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | W

B

 	
 	Border (class in pyparadigm.surface_composition)

C

 	
 	Circle (class in pyparadigm.surface_composition)

 	
 	compose() (in module pyparadigm.surface_composition)

 	Cross() (in module pyparadigm.surface_composition)

D

 	
 	display() (in module pyparadigm.misc)

E

 	
 	empty_surface() (in module pyparadigm.misc)

 	
 	EventConsumerInfo (class in pyparadigm.eventlistener)

 	EventListener (class in pyparadigm.eventlistener)

F

 	
 	Fill (class in pyparadigm.surface_composition)

 	Font (in module pyparadigm.surface_composition)

 	
 	FRect (class in pyparadigm.surface_composition)

 	FreeFloatLayout (class in pyparadigm.surface_composition)

 	from_scale() (pyparadigm.surface_composition.Padding static method)

G

 	
 	GridLayout() (in module pyparadigm.surface_composition)

 	
 	group() (pyparadigm.eventlistener.EventListener method)

I

 	
 	init() (in module pyparadigm.misc)

 	
 	is_left_click() (in module pyparadigm.eventlistener)

L

 	
 	Line (class in pyparadigm.surface_composition)

 	LinLayout (class in pyparadigm.surface_composition)

 	
 	listen() (pyparadigm.eventlistener.EventListener method)

 	listen_until_return() (pyparadigm.eventlistener.EventListener method)

 	LLItem (class in pyparadigm.surface_composition)

M

 	
 	make_transparent_by_colorkey() (in module pyparadigm.misc)

 	make_transparent_by_mask() (in module pyparadigm.misc)

 	
 	Margin (class in pyparadigm.surface_composition)

 	mouse_area() (pyparadigm.eventlistener.EventListener method)

 	MouseProxy (class in pyparadigm.eventlistener)

O

 	
 	Overlay (class in pyparadigm.surface_composition)

P

 	
 	Padding (class in pyparadigm.surface_composition)

 	process_char() (in module pyparadigm.misc)

 	pyparadigm.dialogs (module)

 	
 	pyparadigm.eventlistener (module)

 	pyparadigm.misc (module)

 	pyparadigm.surface_composition (module)

R

 	
 	RectangleShaper (class in pyparadigm.surface_composition)

 	
 	rgba() (in module pyparadigm.misc)

S

 	
 	slide_show() (in module pyparadigm.misc)

 	
 	string_dialog() (in module pyparadigm.dialogs)

 	Surface (class in pyparadigm.surface_composition)

T

 	
 	Text() (in module pyparadigm.surface_composition)

W

 	
 	wait_for_keys() (pyparadigm.eventlistener.EventListener method)

 	wait_for_keys_modified() (pyparadigm.eventlistener.EventListener method)

 	
 	wait_for_n_keypresses() (pyparadigm.eventlistener.EventListener method)

 	wait_for_seconds() (pyparadigm.eventlistener.EventListener method)

 	wait_for_unicode_char() (pyparadigm.eventlistener.EventListener method)

 All modules for which code is available

	pyparadigm.dialogs

	pyparadigm.eventlistener

	pyparadigm.misc

	pyparadigm.surface_composition

 Source code for pyparadigm.dialogs

"""This module contains dialogues, which will query user input"""
from functools import lru_cache

import contextlib
with contextlib.redirect_stdout(None):
 import pygame

from . import surface_composition as psc
from . import eventlistener as pel
from . import misc

def _center_renderer(elem):
 misc.display(psc.compose(pygame.display.get_surface())(
 psc.Padding.from_scale(0.5)(elem)))

def _base_dialog(caption, input, fill_color=0xFFFFFF):
 return psc.Border(width=10)(
 psc.Fill(fill_color)(
 psc.Padding(0.05, 0.05, 0.1, 0.1)(
 psc.LinLayout("v")(
 caption,
 psc.LinLayout("v")(
 psc.Surface(psc.Margin(0, 1, 1, 0))(input),
 psc.LLItem(0.01)(psc.Line("h")))))))

@lru_cache()
def _text_converter(s):
 return psc.Text(s, psc.Font(size=50), antialias=True)

[docs]def string_dialog(caption: str, renderer: callable = _center_renderer,
 el: pel.EventListener = None, text_renderer=_text_converter):
 """Will display a dialog which gets a string as input from the user.
 By default the dialog will be rendered to the screen directly, to control
 the target pass a callable as renderer which takes a single argument, which
 is an element tree. This will be called by string_dialog to display itself.
 You can pass an eventlistener instance, which will then be used in case you
 got some important permanent handlers that must be run. You can pass a
 function that converts a string to something that can be used within
 compose() with the text_renderer to control the optic of the text"""
 el = el or pel.EventListener()
 buffer = ""
 while True:
 renderer(_base_dialog(text_renderer(caption), text_renderer(buffer)))
 key = el.wait_for_unicode_char()
 if key == "\x1b": # Str representation of ESC
 return None
 elif key == "\x0D": # Return
 return buffer
 else:
 buffer = misc.process_char(buffer, key)

 Source code for pyparadigm.eventlistener

"""The Eventlistener wraps pygames event-loop.

The Core method is the listen() method.
It gathers the events that have piled up in pygame so far
and processes them acording to handler functions.
This allows for a main-loop free script design, which is more suited for
experimental paradigms.
In a typical experiment the script just waits for a userinput and does nothing,
or only a very few things in between. Approaching this need with a main
event-loop requires the implementation of some sort of statemachine, which again
requires quite some code.

The EventListener enables one to write scripts in a time-linear manner, and only
dab into local event-loops whenever neccessary throught the listen-function.

There are a few pre-implemented methods, which cover most of those use-cases in
the developement of experimental paradigms.

* wait_for_keypress() will return once a key was pressed n times.
* wait_for_keys_timed_out() will wait for one of multiple possible keys,
 but return after the given timeout in an
 y case
* and wait_for_seconds will simply wait the given time, but in the mean-time run
 what ever handlers were passed to the EventListener.

By default, there is one permanent handler, which will call exit(1) when
Ctrl + c is pressed.
"""
import contextlib
import inspect
with contextlib.redirect_stdout(None):
 import pygame

from pygame import (KMOD_LSHIFT, KMOD_RSHIFT, KMOD_SHIFT, KMOD_CAPS,
 KMOD_LCTRL, KMOD_RCTRL, KMOD_CTRL, KMOD_LALT, KMOD_RALT,
 KMOD_ALT, KMOD_LMETA, KMOD_RMETA, KMOD_META, KMOD_NUM, KMOD_MODE)

from enum import Enum
from typing import Callable, Any
from collections import defaultdict

import time
import itertools as itt

from .surface_composition import _wrap_children, Surface

Seemingly there are no pygame defines for this, so:
MOUSE_LEFT = 1
MOUSE_MIDDLE = 2
MOUSE_RIGHT = 3
MOUSE_SCROL_FW = 4
MOUSE_SCROL_BW = 5

[docs]class EventConsumerInfo(Enum):
 """Can be returned by event-handler functions to communicate with the listener.
 For Details see EventListener"""
 DONT_CARE = 0
 CONSUMED = 1

[docs]def is_left_click(event):
 """checks whether the provided pygame event is a left mouse click"""
 return (event.type == pygame.MOUSEBUTTONDOWN
 and event.button == MOUSE_LEFT)

def is_key_press(event, key):
 return event.type == pygame.KEYDOWN \
 and event.key == key

def _is_iterable(val):
 try:
 some_object_iterator = iter(val)
 return True
 except TypeError as te:
 return False

def _get_arity(callable):
 """returns the number of arguments a callable accepts"""
 return len(inspect.signature(callable).parameters)

class Handler:
 @staticmethod
 def key_press(keys):
 """returns a handler that can be used with EventListener.listen()
 and returns when a key in keys is pressed"""
 return lambda e: e.key if e.type == pygame.KEYDOWN \
 and e.key in keys else EventConsumerInfo.DONT_CARE

 @staticmethod
 def unicode_char(ignored_chars=None):
 """returns a handler that listens for unicode characters"""
 return lambda e: e.unicode if e.type == pygame.KEYDOWN \
 and ((ignored_chars is None)
 or (e.unicode not in ignored_chars))\
 else EventConsumerInfo.DONT_CARE

 @staticmethod
 def resize_event_handler(event_result=pygame.VIDEORESIZE):
 '''returns a handler that will make a listen function return
 event_result, when the window is resized'''
 return lambda e: event_result if e.type == pygame.VIDEORESIZE\
 else EventConsumerInfo.DONT_CARE

 @staticmethod
 def quit_event_handler(event_result=pygame.QUIT):
 '''returns a handler that will make a listen function return
 event_result, when the window is resized'''
 return lambda e: event_result if e.type == pygame.QUIT\
 else EventConsumerInfo.DONT_CARE

[docs]class MouseProxy:
 """has a _draw method so that it can be used with
 surface_composition.compose(). When "rendered" it simply saves the own
 coordinates and then renders its child.
 The listener method can then be used with EventListener.listen() to execute
 the provided handler when the mouse interacts with the area.
 The handler gets the event type, pygame.MOUSEBUTTONUP, pygame.MOUSEBUTTONDOWN
 and pygame.MOUSEMOTION and the relative coordinates within the area.
 For unique identification along all MouseProxies the ident paramenter is used.
 If ident is None (the default) it is set to id(handler)"""

 mouse_events = {pygame.MOUSEBUTTONUP, pygame.MOUSEBUTTONDOWN,
 pygame.MOUSEMOTION}

 def __init__(self, handler: Callable[[int, int], int], ident=None):
 self.handler = handler
 self.rect = pygame.Rect(0, 0, 0, 0)
 self.child = None
 self.ident = ident or id(handler)

 def __call__(self, child):
 self.child = _wrap_children(child)
 return self

 def _draw(self, surface, rect):
 # print("given:", rect)
 self.rect = rect if not type(self.child) == Surface\
 else self.child.compute_render_rect(rect)
 # print("used:", self.rect)
 if self.child:
 self.child._draw(surface, rect)

 def listener(self, e):
 if e.type in MouseProxy.mouse_events:
 pos = pygame.mouse.get_pos()
 if self.rect.collidepoint(pos):
 arity = _get_arity(self.handler)
 if arity == 3:
 return self.handler(
 e, pos[0] - self.rect.x, pos[1] - self.rect.y)
 elif arity == 4:
 return self.handler(
 e, pos[0] - self.rect.x, pos[1] - self.rect.y, self.rect)
 else:
 raise RuntimeError(
 f"Invalid handler. takes {arity} arguments, but only 3 or 4 allowed")
 return EventConsumerInfo.DONT_CARE

[docs]class EventListener(object):
 """
 :param permanent_handlers: iterable of permanent handlers
 :type permanent_handlers: iterable
 :param use_ctrl_c_handler: specifies whether a handler that quits the
 script when ctrl + c is pressed should be used
 :type use_ctrl_c_handler: Bool
 """

 _mod_keys = {KMOD_LSHIFT, KMOD_RSHIFT, KMOD_SHIFT, KMOD_CAPS,
 KMOD_LCTRL, KMOD_RCTRL, KMOD_CTRL, KMOD_LALT, KMOD_RALT,
 KMOD_ALT, KMOD_LMETA, KMOD_RMETA, KMOD_META, KMOD_NUM, KMOD_MODE}

 @staticmethod
 def _contained_modifiers(mods, mods_of_interes=_mod_keys):
 return frozenset(mod for mod in mods_of_interes if mod & mods)

 @staticmethod
 def _exit_on_ctrl_c(event):
 if event.type == pygame.KEYDOWN \
 and event.key == pygame.K_c \
 and pygame.key.get_mods() & pygame.KMOD_CTRL:
 pygame.quit()
 exit(1)
 else:
 return EventConsumerInfo.DONT_CARE

 def __init__(self, permanent_handlers=None, use_ctrl_c_handler=True):
 self._current_q = []
 self.mouse_proxies = defaultdict(dict)
 self.proxy_group = 0
 if use_ctrl_c_handler:
 self.permanent_handlers = (
 EventListener._exit_on_ctrl_c,
)
 if permanent_handlers:
 self.permanent_handlers += permanent_handlers
 else:
 self.permanent_handlers = permanent_handlers or []

 def _get_q(self):
 self._current_q = itt.chain(self._current_q, pygame.event.get())
 return self._current_q

[docs] def mouse_area(self, handler, group=0, ident=None):
 """Adds a new MouseProxy for the given group to the
 EventListener.mouse_proxies dict if it is not in there yet, and returns
 the (new) MouseProxy. In listen() all entries in the current group of
 mouse_proxies are used."""
 key = ident or id(handler)
 if key not in self.mouse_proxies[group]:
 self.mouse_proxies[group][key] = MouseProxy(handler, ident)
 return self.mouse_proxies[group][key]

[docs] def group(self, group):
 """sets current mouse proxy group and returns self.
 Enables lines like el.group(1).wait_for_keys(...)"""
 self.proxy_group = group
 return self

[docs] def listen(self, *temporary_handlers):
 """When listen() is called all queued pygame.Events will be passed to all
 registered listeners. There are two ways to register a listener:

 1. as a permanent listener, that is always executed for every event. These
 are registered by passing the handler-functions during construction

 2. as a temporary listener, that will only be executed during the current
 call to listen(). These are registered by passing the handler functions
 as arguments to listen()

 When a handler is called it can provoke three different reactions through
 its return value.

 1. It can return EventConsumerInfo.DONT_CARE in which case the EventListener
 will pass the event to the next handler in line, or go to the next event,
 if the last handler was called.

 2. It can return EventConsumerInfo.CONSUMED in which case the event will not
 be passed to following handlers, and the next event in line will be
 processed.

 3. It can return anything else (including None, which will be returned if no
 return value is specified) in this case the listen()-method will return
 the result of the handler.

 Therefore all permanent handlers should usually return
 EventConsumerInfo.DONT_CARE
 """
 funcs = tuple(itt.chain(self.permanent_handlers,
 (proxy.listener for proxy in
 self.mouse_proxies[self.proxy_group].values()),
 temporary_handlers))

 for event in self._get_q():
 for func in funcs:
 ret = func(event)
 if ret == EventConsumerInfo.CONSUMED:
 break
 if ret == EventConsumerInfo.DONT_CARE:
 continue
 else:
 return ret

[docs] def listen_until_return(self, *temporary_handlers, timeout=0, sleeptime=0):
 """Calls listen repeatedly until listen returns something else than None.
 Then returns listen's result. If timeout is not zero listen_until_return
 stops after timeout seconds and returns None."""
 start = time.time()
 while timeout == 0 or time.time() - start < timeout:
 res = self.listen(*temporary_handlers)
 if res is not None:
 return res
 if sleeptime > 0:
 time.sleep(sleeptime)

[docs] def wait_for_n_keypresses(self, key, n=1):
 """Waits till one key was pressed n times.

 :param key: the key to be pressed as defined by pygame. E.g.
 pygame.K_LEFT for the left arrow key
 :type key: int
 :param n: number of repetitions till the function returns
 :type n: int
 """
 my_const = "key_consumed"
 counter = 0

 def keypress_listener(e): return my_const \
 if e.type == pygame.KEYDOWN and e.key == key \
 else EventConsumerInfo.DONT_CARE

 while counter < n:
 if self.listen(keypress_listener) == my_const:
 counter += 1

[docs] def wait_for_keys(self, *keys, timeout=0, sleeptime=0):
 """Waits until one of the specified keys was pressed, and returns
 which key was pressed.

 :param keys: iterable of integers of pygame-keycodes, or simply
 multiple keys passed via multiple arguments
 :type keys: iterable
 :param timeout: number of seconds to wait till the function returns
 :type timeout: float

 :returns: The keycode of the pressed key, or None in case of timeout
 :rtype: int
 """
 if len(keys) == 1 and _is_iterable(keys[0]):
 keys = keys[0]

 return self.listen_until_return(Handler.key_press(keys), timeout=timeout,
 sleeptime=sleeptime)

[docs] def wait_for_keys_modified(self, *keys, modifiers_to_check=_mod_keys,
 timeout=0, sleeptime=0.001):
 """The same as wait_for_keys, but returns a frozen_set which contains
 the pressed key, and the modifier keys.

 :param modifiers_to_check: iterable of modifiers for which the function
 will check whether they are pressed

 :type modifiers: Iterable[int]"""

 set_mods = pygame.key.get_mods()
 return frozenset.union(
 frozenset([self.wait_for_keys(*keys, timeout=timeout, sleeptime=sleeptime)]),
 EventListener._contained_modifiers(set_mods, modifiers_to_check))

[docs] def wait_for_seconds(self, seconds, sleeptime=0.001):
 """basically time.sleep() but in the mean-time the permanent handlers
 are executed"""
 self.listen_until_return(timeout=seconds, sleeptime=sleeptime)

[docs] def wait_for_unicode_char(self, ignored_chars=None, timeout=0, sleeptime=0.001):
 """Returns a str that contains the single character that was pressed.
 This already respects modifier keys and keyboard layouts. If timeout is
 not none and no key is pressed within the specified timeout, None is
 returned. If a key is ingnored_chars it will be ignored. As argument for
 irgnored_chars any object that has a __contains__ method can be used,
 e.g. a string, a set, a list, etc"""
 return self.listen_until_return(Handler.unicode_char(ignored_chars),
 timeout=timeout, sleeptime=sleeptime)

 Source code for pyparadigm.misc

"""Contains code that did not make it into an own module.

"""

import contextlib
with contextlib.redirect_stdout(None):
 import pygame
 import pygame.ftfont
from . import surface_composition as sc

import os
import time
from functools import lru_cache
from threading import Thread

class _PumpThread(Thread):
 """See the documentation for the interactive_mode arg from :ref:`init`"""
 def run(self):
 while self._run:
 pygame.event.pump()
 time.sleep(0.1)

 def stop(self):
 self._run = False
 self.join()

 def __init__(self):
 super().__init__()
 self._run = True
 self.start()

[docs]def init(resolution, pygame_flags=0, display_pos=(0, 0), interactive_mode=False,
 title='Pygame Window'):
 """Creates a window of given resolution.

 :param resolution: the resolution of the windows as (width, height) in
 pixels
 :type resolution: tuple
 :param pygame_flags: modify the creation of the window.
 For further information see :ref:`creating_a_window`
 :type pygame_flags: int
 :param display_pos: determines the position on the desktop where the
 window is created. In a multi monitor system this can be used to position
 the window on a different monitor. E.g. the monitor to the right of the
 main-monitor would be at position (1920, 0) if the main monitor has the
 width 1920.
 :type display_pos: tuple
 :param interactive_mode: Will install a thread, that emptys the
 event-queue every 100ms. This is neccessary to be able to use the
 display() function in an interactive console on windows systems.
 If interactive_mode is set, init() will return a reference to the
 background thread. This thread has a stop() method which can be used to
 cancel it. If you use ctrl+d or exit() within ipython, while the thread
 is still running, ipython will become unusable, but not close.
 :type interactive_mode: bool
 :param title: the Title of the Window
 :type title: str

 :return: a reference to the display screen, or a reference to the background
 thread if interactive_mode was set to true. In the second scenario you
 can obtain a reference to the display surface via
 pygame.display.get_surface()

 :rtype: pygame.Surface
 """

 os.environ['SDL_VIDEO_WINDOW_POS'] = "{}, {}".format(*display_pos)
 pygame.init()
 pygame.ftfont.init()
 disp = pygame.display.set_mode(resolution, pygame_flags)
 pygame.display.set_caption(title)
 return _PumpThread() if interactive_mode else disp

[docs]def display(surface):
 """Displays a pygame.Surface in the window.

 in pygame the window is represented through a surface, on which you can draw
 as on any other pygame.Surface. A refernce to to the screen can be optained
 via the :py:func:`pygame.display.get_surface` function. To display the
 contents of the screen surface in the window :py:func:`pygame.display.flip`
 needs to be called.

 :py:func:`display` draws the surface onto the screen surface at the postion
 (0, 0), and then calls :py:func:`flip`.

 :param surface: the pygame.Surface to display
 :type surface: pygame.Surface
 """
 screen = pygame.display.get_surface()
 screen.blit(surface, (0, 0))
 pygame.display.flip()

[docs]def slide_show(slides, continue_handler):
 """Displays one "slide" after another.

 After displaying a slide, continue_handler is called without arguments.
 When continue_handler returns, the next slide is displayed.

 Usage example ::

 slide_show(text_screens,
 partial(event_listener.wait_for_n_keypresses, pygame.K_RETURN))

 (partial is imported from the functools module.)

 :param slides: pygame.Surfaces to be displayed.
 :type slides: iterable
 :param continue_handler: function, that returns when the next slide should
 be displayed.
 :type continue_handler: callable with arity 0.
 """
 for slide in slides:
 display(slide)
 continue_handler()

[docs]def empty_surface(fill_color, size=None, flags=0):
 """Returns an empty surface filled with fill_color.

 :param fill_color: color to fill the surface with
 :type fill_color: pygame.Color

 :param size: the size of the new surface, if None its created
 to be the same size as the screen
 :type size: int-2-tuple
 """
 if size is None:
 sr = pygame.display.get_surface().get_rect()
 surf = pygame.Surface((sr.w, sr.h), flags=flags)
 else:
 surf = pygame.Surface(size, flags=flags)
 surf.fill(fill_color)
 return surf

_char_mappings = {
 "\r": "\n",
 "\t": " "
}

[docs]def rgba(colorcode, alpha=255):
 """Returns a pygame rgba color object, with the provided
 alpha value."""
 return pygame.Color(colorcode * 0x100 + alpha)

[docs]def process_char(buffer: str, char: str, mappings=_char_mappings):
 """This is a convinience method for use with
 EventListener.wait_for_unicode_char(). In most cases it simply appends
 char to buffer. Some replacements are done because presing return will
 produce '\\r' but for most cases '\\n' would be desireable.
 Also backspace cant just be added to a string either, therefore, if char is
 "\\u0008" the last character from buffer will be cut off. The replacement
 from '\\r' to '\\n' is done using the mappings argument, the default value
 for it also contains a mapping from '\t' to 4 spaces.

 :param buffer: the string to be updated
 :type buffer: str

 :param char: the unicode character to be processed
 :type char: str

 :param mappings: a dict containing mappings
 :type mappings: dict

 :returns: a new string"""
 if char in mappings:
 return buffer + mappings[char]
 elif char == "\u0008":
 return buffer[:-1] if len(buffer) > 0 else buffer
 else:
 return buffer + char

[docs]def make_transparent_by_mask(surf, mask, copy=True):
 """Sets all voxels that are 1 in the mask to transparent.
 if surf has no alpha channel a new image is returned, if it does have
 one the behavior depends on the copy
 parameter"""
 if surf.get_flags() & pygame.SRCALPHA == 0:
 surf = surf.convert_alpha()
 elif copy:
 surf = surf.copy()
 pix_arr = pygame.surfarray.pixels_alpha(surf)
 pix_arr[mask.astype(bool)] = 0
 return surf

[docs]def make_transparent_by_colorkey(surf, colorkey, copy=True):
 """Makes image transparent, and sets all pixel of a certain color
 transparent

 This is useful if images should be scaled and smoothed, as this will change
 the colors and make colorkeys useless, if surf has no alpha channel a new
 image is returned, if it does have one the behavior depends on the copy
 parameter"""
 if type(colorkey) != int:
 colorkey = surf.map_rgb(colorkey)

 pix_arr = pygame.surfarray.array2d(surf)
 mask = pix_arr == colorkey
 return make_transparent_by_mask(surf, mask, copy)

 Source code for pyparadigm.surface_composition

"""Easy Image Composition

The purpose of this module is to make it easy to compose the
frames that are displayed in a paradigm. For an introduction, please refer to
the :ref:`tutorial<creating_surfaces>`
"""
from functools import wraps, lru_cache
from itertools import accumulate, chain

import contextlib
with contextlib.redirect_stdout(None):
 import pygame
 import pygame.ftfont

from ._primitives import PPError

_lmap = wraps(map)(lambda *args, **kwargs:list(map(*args, **kwargs)))

def _wrap_surface(elem):
 return Surface()(elem) if type(elem) == pygame.Surface else elem

def _round_to_int(val):
 return int(round(val))

def _call_function(elem):
 return elem() if callable(elem) else elem

def _inner_func_anot(func):
 """must be applied to all inner functions that return contexts.

 Wraps all instances of pygame.Surface in the input in Surface"""
 @wraps(func)
 def new_func(*args):
 return func(*_lmap(_wrap_surface, args))
 return new_func

def _wrap_children(children):
 try:
 return [_wrap_surface(c) for c in children]
 except TypeError:
 return _wrap_surface(children)

def _check_call_op(child):
 if child is not None:
 raise RuntimeError("Call operator was called twice")

[docs]class LLItem:
 """Defines the relative size of an element in a LinLayout

 All Elements that are passed to a linear layout are automatically wrapped
 into an LLItem with relative_size=1. Therefore by default all elements
 within a layout will be of the same size. To change the proportions a LLItem
 can be used explicitely with another relative size.

 It is also possible to use an LLItem as placeholde in a layout, to generate
 an empty space like this:

 :Example:

 LinLayout("h")(
 LLItem(1),
 LLItem(1)(Circle(0xFFFF00)))
 """
 def __init__(self, relative_size):
 self.child = Surface()
 self.relative_size = relative_size

 def __call__(self, child):
 if child:
 self.child = _wrap_surface(child)
 return self

 def __repr__(self):
 return "LLItem({})({})".format(self.relative_size, repr(self.child))

[docs]class LinLayout:
 """A linear layout to order items horizontally or vertically.

 Every element in the layout is automatically wrapped within a LLItem with
 relative_size=1, i.e. all elements get assigned an equal amount of space, to
 change that elements can be wrappend in LLItems manually to get desired
 proportions

 :param orientation: orientation of the layout, either 'v' for vertica, or
 'h' for horizontal.

 :type orientation: str
 """
 def __init__(self, orientation):
 assert orientation in ["v", "h"]
 self.orientation = orientation
 self.children = None

 def __call__(self, *children):
 if len(children) == 0:
 raise PPError("You tried to add no children to layout")

 _check_call_op(self.children)
 self.children = _lmap(lambda child:
 child if type(child) == LLItem else LLItem(1)(child),
 _wrap_children(children))
 return self

 def _draw(self, surface, target_rect):
 child_rects = self._compute_child_rects(target_rect)
 for child, rect in zip(self.children, child_rects):
 child.child._draw(surface, rect)

 def _compute_child_rects(self, target_rect):
 def flip_if_not_horizontal(t):
 return t if self.orientation == "h" else (t[1], t[0])

 target_rect_size = target_rect.size
 sum_child_weights = sum(child.relative_size for child in self.children)
 if sum_child_weights == 0:
 raise PPError("LinLayout Children all have weight 0: " + repr(self.children))
 divider, full = flip_if_not_horizontal(target_rect_size)
 dyn_size_per_unit = divider / sum_child_weights
 strides = [child.relative_size * dyn_size_per_unit for child in self.children]
 dyn_offsets = [0] + list(accumulate(strides))[:-1]
 left_offsets, top_offsets = flip_if_not_horizontal((dyn_offsets,
 [0] * len(self.children)))
 widths, heights = flip_if_not_horizontal((strides, [full] * len(self.children)))

 return [pygame.Rect(target_rect.left + left_offset,
 target_rect.top + top_offset,
 w, h)
 for left_offset, top_offset, w, h in
 zip(left_offsets, top_offsets, widths, heights)]

[docs]class FRect:
 """A wrapper Item for children of the FreeFloatLayout, see description of FreeFloatLayout"""
 def __init__(self, x, y, w, h):
 for coord in (x, y, w, h):
 assert FRect.coord_valid(coord)

 self.x = x
 self.y = y
 self.w = w
 self.h = h
 self.child = None

 @staticmethod
 def coord_valid(x):
 return type(x) is int or (type(x) == float and 0 <= x <= 1)

 @staticmethod
 def adjust_coord(x, abs_partner):
 if type(x) == int:
 if x >= 0:
 return x
 else:
 return abs_partner + x
 elif type(x) == float:
 return x * abs_partner

 # this code should never be reached
 assert False

 def to_abs_rect(self, target_rect):
 tmp = pygame.Rect(
 FRect.adjust_coord(self.x, target_rect.w),
 FRect.adjust_coord(self.y, target_rect.h),
 FRect.adjust_coord(self.w, target_rect.w),
 FRect.adjust_coord(self.h, target_rect.h))
 return tmp.move(target_rect.topleft)

 def __call__(self, child):
 if child:
 self.child = _wrap_surface(child)
 return self

[docs]class FreeFloatLayout:
 """A "Layout" that allows for free positioning of its elements. All children
 must be Wrapped in an FRect, which takes a rects arguments (x, y, w, h), and
 determines the childs rect. All values can either be floats, and must then
 be between 0 and 1 and are relative to the rect-size of the layout, positive
 integers, in which case the values are interpreded as pixel offsets from the
 layout rect origin, or negative integers, in which case the absolute value
 is the available width or height minus the value"""
 def __init__(self) -> None:
 self.children = None

 def __call__(self, *children):
 if len(children) == 0:
 raise PPError("You tried to add no children to layout")

 _check_call_op(self.children)
 for child in children:
 if type(child) != FRect:
 raise PPError("All children of a FreeFloatLayout must be wrapped in an FRect")
 self.children = children
 return self

 def _draw(self, surface, target_rect):
 for child in self.children:
 rect = child.to_abs_rect(target_rect)
 if child.child is None:
 raise ValueError("There is an FRect without child")
 child.child._draw(surface, rect)

[docs]class Margin:
 """Defines the relative position of an item within a Surface.
 For details see Surface.
 """
 __slots__ = ["left", "right", "top", "bottom"]
 def __init__(self, left=1, right=1, top=1, bottom=1):
 self.left=left
 self.right=right
 self.top=top
 self.bottom=bottom

def _offset_by_margins(space, one, two):
 return space * one / (one + two)

[docs]class Surface:
 """Wraps a pygame surface.

 The Surface is the connection between the absolute world of pygame.Surfaces and the
 relative world of the composition functions. A pygame.Surfaces can be bigger than
 the space that is available to the Surface, or smaller. The Surface does the actual
 blitting, and determines the concrete position, and if necessary (or
 desired) scales the input surface.

 Warning: When images are scaled with smoothing, colors will change decently, which
 makes it inappropriate to use in combination with colorkeys.

 :param margin: used to determine the exact location of the pygame.Surfaces within
 the available space. The margin value represents the proportion of
 the free space, along
 an axis, i.e. Margin(1, 1, 1, 1) is centered, Margin(0, 1, 1, 2) is as far
 left as possible and one/third on the way down.

 :type margin: Margin object

 :param scale: If 0 < scale <= 1 the longer side of the surface is scaled to
 to the given fraction of the available space, the aspect ratio is
 will be preserved.
 If scale is 0 the will be no scaling if the image is smaller than the
 available space. It will still be scaled down if it is too big.

 :type scale: float

 :param smooth: if True the result of the scaling will be smoothed

 :type smooth: float
 """
 def __init__(self, margin=Margin(1, 1, 1, 1), scale=0, smooth=True,
 keep_aspect_ratio=True):
 assert 0 <= scale <= 1
 self.child = None
 self.margin = margin
 self.scale = scale
 self.smooth = smooth
 self.keep_aspect_ratio = keep_aspect_ratio

 def __call__(self, child):
 _check_call_op(self.child)
 self.child = child
 return self

 @staticmethod
 def _scale_to_target(source, target_size, smooth=False):
 return pygame.transform.scale(source, target_size) if not smooth\
 else pygame.transform.smoothscale(source, target_size)

 @staticmethod
 def _determine_target_size(child, target_rect, scale, keep_aspect_ratio):
 if scale > 0:
 scaled_target_rect = tuple(dist * scale for dist in target_rect)
 if keep_aspect_ratio:
 return child.get_rect().fit(scaled_target_rect).size
 else:
 return scaled_target_rect[2:4]
 elif all(s_dim <= t_dim
 for s_dim, t_dim in zip(child.get_size(), target_rect.size)):
 return child.get_size()
 else:
 return target_rect.size

 def compute_render_rect(self, target_rect):
 target_size = Surface._determine_target_size(
 self.child, target_rect, self.scale, self.keep_aspect_ratio)
 remaining_h_space = target_rect.w - target_size[0]
 remaining_v_space = target_rect.h - target_size[1]
 return pygame.Rect(
 (target_rect.left + _offset_by_margins(remaining_h_space,
 self.margin.left, self.margin.right),
 target_rect.top + _offset_by_margins(remaining_v_space,
 self.margin.top, self.margin.bottom)), target_size)

 def _draw(self, surface, target_rect):
 if self.child is None:
 return
 render_rect = self.compute_render_rect(target_rect)
 if render_rect.size == self.child.get_size():
 content = self.child
 else:
 content = Surface._scale_to_target(
 self.child, render_rect.size, self.smooth)

 surface.blit(content, render_rect)

[docs]class Padding:
 """Pads a child element

 Each argument refers to a percentage of the axis it belongs to.
 A padding of (0.25, 0.25, 0.25, 0.25) would generate blocked area a quater of the
 available height in size above and below the child, and a quarter of the
 available width left and right of the child.

 If left and right or top and bottom sum up to one that would mean no space
 for the child is remaining
 """
 def _draw(self, surface, target_rect):
 assert self.child is not None

 child_rect = pygame.Rect(
 target_rect.left + target_rect.w * self.left,
 target_rect.top + target_rect.h * self.top,
 target_rect.w * (1 - self.left - self.right),
 target_rect.h * (1 - self.top - self.bottom)
)
 self.child._draw(surface, child_rect)

 def __init__(self, left, right, top, bottom):
 assert all(0 <= side < 1 for side in [left, right, top, bottom])
 assert left + right < 1
 assert top + bottom < 1
 self.left = left
 self.right = right
 self.top = top
 self.bottom = bottom
 self.child = None

 def __call__(self, child):
 _check_call_op(self.child)
 self.child = _wrap_surface(child)
 return self

[docs] @staticmethod
 def from_scale(scale_w, scale_h=None):
 """Creates a padding by the remaining space after scaling the content.

 E.g. Padding.from_scale(0.5) would produce Padding(0.25, 0.25, 0.25, 0.25) and
 Padding.from_scale(0.5, 1) would produce Padding(0.25, 0.25, 0, 0)
 because the content would not be scaled (since scale_h=1) and therefore
 there would be no vertical padding.

 If scale_h is not specified scale_h=scale_w is used as default

 :param scale_w: horizontal scaling factors
 :type scale_w: float
 :param scale_h: vertical scaling factor
 :type scale_h: float
 """
 if not scale_h: scale_h = scale_w
 w_padding = [(1 - scale_w) * 0.5] * 2
 h_padding = [(1 - scale_h) * 0.5] * 2
 return Padding(*w_padding, *h_padding)

[docs]class RectangleShaper:
 """Creates a padding, defined by a target Shape.

 Width and height are the relative proportions of the target rectangle.
 E.g RectangleShaper(1, 1) would create a square. and RectangleShaper(2, 1)
 would create a rectangle which is twice as wide as it is high.
 The rectangle always has the maximal possible size within the parent area.
 """
 def __init__(self, width=1, height=1):
 self.child = None
 self.width = width
 self.height = height

 def __call__(self, child):
 _check_call_op(self.child)
 self.child = _wrap_surface(child)
 return self

 def _draw(self, surface, target_rect):
 parent_w_factor = target_rect.w / target_rect.h
 my_w_factor = self.width / self.height
 if parent_w_factor > my_w_factor:
 my_h = target_rect.h
 my_w = my_h * my_w_factor
 my_h_offset = 0
 my_w_offset = _round_to_int((target_rect.w - my_w) * 0.5)
 else:
 my_w = target_rect.w
 my_h = my_w / self.width * self.height
 my_w_offset = 0
 my_h_offset = _round_to_int((target_rect.h - my_h) * 0.5)
 self.child._draw(surface, pygame.Rect(
 target_rect.left + my_w_offset,
 target_rect.top + my_h_offset,
 my_w,
 my_h
))

[docs]class Circle:
 """Draws a Circle in the assigned space.

 The circle will always be centered, and the radius will be half of the
 shorter side of the assigned space.

 :param color: The color of the circle

 :type color: pygame.Color or int

 :param width: width of the circle (in pixels). If 0 the circle will be filled

 :type width: int
 """
 def __init__(self, color, width=0):
 self.color = color
 self.width = width

 def _draw(self, surface, target_rect):
 pygame.draw.circle(surface, self.color, target_rect.center,
 int(round(min(target_rect.w, target_rect.h) * 0.5)), self.width)

[docs]class Fill:
 """Fills the assigned area. Afterwards, the children are rendered

 :param color: the color with which the area is filled

 :type color: pygame.Color or int
 """
 def __init__(self, color):
 self.color = color
 self.child = None

 def __call__(self, child):
 _check_call_op(self.child)
 self.child = _wrap_surface(child)
 return self

 def _draw(self, surface, target_rect):
 surface.fill(self.color, target_rect)
 if self.child:
 self.child._draw(surface, target_rect)

[docs]class Overlay:
 """Draws all its children on top of each other in the same rect"""
 def __init__(self, *children):
 self.children = _wrap_children(children)

 def _draw(self, surface, target_rect):
 for child in self.children:
 child._draw(surface, target_rect)

[docs]def Cross(width=3, color=0):
 """Draws a cross centered in the target area

 :param width: width of the lines of the cross in pixels
 :type width: int
 :param color: color of the lines of the cross
 :type color: pygame.Color
 """
 return Overlay(Line("h", width, color), Line("v", width, color))

[docs]class Border:
 """Draws a border around the contained area. Can have a single child.

 :param width: width of the border in pixels
 :type width: int
 :param color: color of the border
 :type color: pygame.Color
 """
 def __init__(self, width=3, color=0):
 v_line = Line("v", width, color)
 h_line = Line("h", width, color)
 self.child_was_added = False
 self.overlay = Overlay(
 LinLayout("h")(
 LLItem(0)(v_line),
 LLItem(1),
 LLItem(0)(v_line)
),
 LinLayout("v")(
 LLItem(0)(h_line),
 LLItem(1),
 LLItem(0)(h_line)
)
)

 def __call__(self, child):
 _check_call_op(None if not self.child_was_added else 1)
 self.overlay.children.append(_wrap_surface(child))
 return self

 def _draw(self, surface, target_rect):
 self.overlay._draw(surface, target_rect)

[docs]class Line:
 """Draws a line.

 :param width: width of the line in pixels
 :type widht: int
 :param orientation: "v" or "h". Indicates whether the line should be
 horizontal or vertical.
 :type orientation: str
 """
 def __init__(self, orientation, width=3, color=0):
 assert orientation in ["h", "v"]
 assert width > 0
 self.orientation = orientation
 self.width = width
 self.color = color

 def _draw(self, surface, target_rect):
 if self.orientation == "h":
 pygame.draw.line(surface, self.color, (
 target_rect.left,
 _round_to_int(target_rect.top + target_rect.h * 0.5)), (
 target_rect.left + target_rect.w - 1,
 _round_to_int(target_rect.top + target_rect.h * 0.5)),
 self.width)
 else:
 pygame.draw.line(surface, self.color, (
 _round_to_int(target_rect.left + target_rect.width * 0.5),
 target_rect.top), (
 _round_to_int(target_rect.left + target_rect.width * 0.5),
 target_rect.top + target_rect.h - 1),
 self.width)

def _fill_col(target_len):
 return lambda col: col + [None] * (target_len - len(col))

def _interleave_with_lines(line, contents):
 ll = [LLItem(0)(line)]
 return chain(*zip(ll * len(contents), contents), ll)

def _to_h_layout(cols, line_width, color):
 def inner_wrap(children):
 contents = [it(child) for it, child in zip(
 map(LLItem, cols),
 map(_wrap_surface, children))]
 return LinLayout("h")(*(contents if line_width == 0 else
 _interleave_with_lines(Line("v", line_width, color),
 contents)))
 return inner_wrap

[docs]def GridLayout(row_proportions=None, col_proportions=None, line_width=0, color=0):
 """Layout that arranges its children on a grid.

 Proportions are given as lists of integers, where the nth element
 represents the proportion of the nth row or column.

 Children are added in lists, every list represents one row,
 if row or column proportions are provided, the number of rows or columns in
 the children must match the provided proportions.
 To define an empty cell use None as child.

 If no column proportions are provided, rows can have different lengths. In
 this case the width of the layout will be the length of the longest row,
 and the other rows will be filled with Nones"""
 def inner_grid_layout(*children):
 nonlocal row_proportions, col_proportions
 assert all(type(child) == list for child in children)
 if row_proportions is None: row_proportions = [1] * len(children)
 else: assert len(row_proportions) == len(children)

 col_width = max(map(len, children))
 if col_proportions: assert len(col_proportions) == col_width
 else: col_proportions = [1] * col_width
 filled_cols = _lmap(_fill_col(col_width), children)

 llitems = map(LLItem, row_proportions)
 mapped_rows = map(_to_h_layout(col_proportions, line_width, color),
 filled_cols)
 contents = [it(child) for it, child in zip(llitems, mapped_rows)]

 return LinLayout("v")(*_interleave_with_lines(
 Line("h", line_width, color), contents)
 if line_width else contents)

 return inner_grid_layout

[docs]def compose(target, root=None):
 """Top level function to create a surface.

 :param target: the pygame.Surface to blit on. Or a (width, height) tuple
 in which case a new surface will be created

 :type target: -
 """
 if type(root) == Surface:
 raise ValueError("A Surface may not be used as root, please add "
 +"it as a single child i.e. compose(...)(Surface(...))")
 @_inner_func_anot
 def inner_compose(*children):
 if root:
 root_context = root(*children)
 else:
 assert len(children) == 1
 root_context = children[0]

 if type(target) == pygame.Surface:
 surface = target
 size = target.get_size()
 else:
 size = target
 surface = pygame.Surface(size)

 root_context._draw(surface, pygame.Rect(0, 0, *size))
 return surface
 return inner_compose

[docs]@lru_cache(128)
def Font(name=None, source="sys", italic=False, bold=False, size=20):
 """Unifies loading of fonts.

 :param name: name of system-font or filepath, if None is passed the default
 system-font is loaded

 :type name: str
 :param source: "sys" for system font, or "file" to load a file
 :type source: str
 """
 assert source in ["sys", "file"]
 if not name:
 return pygame.font.SysFont(pygame.font.get_default_font(),
 size, bold=bold, italic=italic)
 if source == "sys":
 return pygame.font.SysFont(name,
 size, bold=bold, italic=italic)
 else:
 f = pygame.font.Font(name, size)
 f.set_italic(italic)
 f.set_bold(bold)
 return f

def _text(text, font, color=pygame.Color(0, 0, 0), antialias=False):
 text = font.render(text, antialias, color)
 return text.convert_alpha()

[docs]def Text(text, font, color=pygame.Color(0, 0, 0), antialias=False, align="center"):
 """Renders a text. Supports multiline text, the background will be transparent.

 :param align: text-alignment must be "center", "left", or "righ"
 :type align: str
 :return: the input text
 :rtype: pygame.Surface
 """
 assert align in ["center", "left", "right"]
 margin_l, margin_r = 1, 1
 if align == "left": margin_l = 0
 elif align == "right": margin_r = 0
 margin = Margin(margin_l, margin_r)
 color_key = pygame.Color(0, 0, 1) if pygame.Color(0, 0, 1) != color else 0x000002

 text_surfaces = [_text(line.strip(), font=font,
 color=color, antialias=antialias)
 for line in text.split("\n")]
 w = max(surf.get_rect().w for surf in text_surfaces)
 h = sum(surf.get_rect().h for surf in text_surfaces)
 surf = compose((w, h), Fill(color_key))(LinLayout("v")(
 *_lmap(lambda s: Surface(margin)(s), text_surfaces)))
 surf.set_colorkey(color_key)
 return surf.convert_alpha()

 _static/up.png

_images/itech_feedback.png
pygame window

30€ in 20 days

_images/itech_offer.png
pygame window

In 20 days

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyParadigm

 		
 A tutorial

 		
 Installation

 		
 Overview

 		
 Creating a Window

 		
 Creating Surfaces

 		
 Creating Text

 		
 A tip for performance

 		
 Using numpy arrays as images

 		
 Reacting to user input

 		
 Getting text input

 		
 Getting mouse input

 		
 The Misc-Module

 		
 Next Step

 		
 Examples

 		
 Inter-temporal Choice Task

 		
 Flashing Checkerboard

 		
 Stroop Task

 		
 The Surface Composition Module

 		
 The Event Listener Module

 		
 The Misc-Module

 		
 Extras

 		
 The Dialogs-Module

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

